class="post-2960 post type-post status-publish format-standard has-post-thumbnail hentry category-materials category-products category-recycling tag-biobags tag-biodegradable-garments tag-biofabrication tag-biolab tag-bioleather tag-biomaterial tag-bioplastics tag-laser-cut-fashion tag-modular tag-recycling-2">

Coffee BIO-Leather Bag

Your waste is my treasure!
Working with organic waste can bring circular solutions  for the implementation of closed loops of organic feedstocks.  At Fab Textiles we have been working with food waste since October 2018 and many researchers through their internship developed and evolved recipes for making food waste biocomposites.  There are already some small companies that produce bioleathers with waste, one of them from Mexico called ECOPLASO that I had the possibility to get to know in one of my conferences at ¨Demand Solutions¨ in Miami 2018.



2G sodium alginate
2G dried coffee grains of any organic waste in powder
2G olive oil
5G glycerin
33G water 
(everything is in grams using a precision scale)

MIX for calcification
7G of calcium chloride in 100ml of water

Various organic waste bio-leather samples



1- Weight all the ingredients with a precision scale.
2- Mix the powder together with the glycerin and the olive oil.
3- Add the water and use a mechanical blender to obtain an homogeneous solution.
4- Cast in a silk screen print frame ( you can create your own using any textile and wood)
5- Mix the Calcium chloride with water in a sprayer bottle.
6- Spray the biomaterial on top and bottom with the calcium chloride solution.
7- Let the calcium chloride act for 5´ and rinse with clean water.
8- Let the composite sample dry in a dry and warm place for one week. Depending on the thickness and the size of the sample it may take longer. It will also vary due to the local temperature and humidity.
9- When the product is dry you can separate it from the frame.

Note: As the sample dries, it can become curved, so place it between two level surfaces and some weight on top so at the end we can obtain a really flat sheet




The laser cut pattern can be found and downloaded HERE
class="post-2298 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-textiles category-materials category-products category-tutoriales tag-biobags tag-bioplastic tag-diy tag-fabtextiles">

BioBags collection

This BioBags collection, created by Clara Davis  as part of her training internship at the lab. It is an environmental project about how to replace plastic bags and daily life packaging with biodegradable materials. A plastic bag takes about 450 years to disintegrate in nature. Those three BioBags, made with gelatin base bioplastic are completely biodegradable. It takes about one week to dissolve completely in the water. This project comes as a research outcome of  Biomaterial practices at FabTextiles at Fab Lab Barcelona.

Gelatin base bioplastic is a recipe with 100% natural ingredients : 78% of water, 16% of gelatin and 6% of glycerol. With this recipe you can cook a strong material. The difference between gelatin bioplastic and petroleum plastic is that bioplastic is not long-term resistant to heat (more than 40°) and water (more than one week). That’s why it’s so easy to recycle it.

For now the problem is still the price of creation, too high to considerate the BioBags collection just like simple packaging. It’s costing approximately 80 euros to create one BioBag : price of material, design, machine and time of work. You should know that gelatin base bioplastic takes about one week to dry. A long cooking process before starting to laser cut the BioBag.

The BioBag collection stay at the moment a project between Art & Design but with financial investment we can easily imagine a biodegradable industry coming in a near future.

-> Create your own Biobag

-> Print your bioplastic recipe

-> Learn more about bioplastic

-> Buy a BioBag at Lottozero shop online