Materials

class="post-2771 post type-post status-publish format-standard has-post-thumbnail hentry category-colaboraciones category-fab-textiles category-materials tag-agar-agar tag-biomaterial tag-bioplastic-cook-book tag-bioplastics tag-book tag-burlap tag-clay tag-corn-starch tag-diy tag-fab-textiles tag-gelatine tag-hemp tag-margaret-dunne tag-recipes tag-spirulina">

Bioplastic Cook Book

Bioplastics samples by Margaret Dunne, FabTextiles, Fab Lab Barcelona, 2018

.

During her two month internship at FabTextiles and Materials lab, Margaret Dunne, a fiber scientist researcher studying at the College of Human Ecology at Cornell University, contributed to the research and development bioplastic experimentation. Her task during the internship was to master Bioplastic recipes, experiment and amplify the materials catalogue and publish the second open source book of FabTextiles lab called The Bioplastic Cook Book.
.
After The Secret of Bioplastics, written by Clara Davis in 2017, which explained the history of bioplastics, The Bioplastic Cook Book focuses on recipes for making bioplastics. You can find precise instructions for making gelatine, agar-agar and corn-starch-based bioplastics. Dunne also offers bio-composite recipes using clay, burlap and hemp.
.

Bioplastic cook book page by Margaret Dunne, FabTextiles, Fab Lab Barcelona, 2018

.
In the Bioplastic Cook Book every single ingredient is biodegradable. They are made with biopolymers, plasticizers, solvents, and sometimes an additional, additive. The book opens with the indispensible basics anybody with a passing interest ought to know, required reading before any attempt to make bioplastic. At the end, a question is posed : are bioplastics harmless to the environment ? Margaret Dunne atteimpts to address this problem, exploring the carbon footprint that results from bioplastics.
.

Bioplastic cook book page by Margaret Dunne, FabTextiles, Fab Lab Barcelona, 2018

.

There is a link to the Bioplastic Cook Book at the end of this post. Below, some pictures of Margarette Dunne’s experiments.

Gelatine-based bioplastic sample by Margaret Dunne, FabTextiles, Fab Lab Barcelona, 2018

Agar-agar-based bioplastic sample by Margaret Dunne, FabTextiles, Fab Lab Barcelona, 2018

Bio-composite gelatine+clay sample by Margaret Dunne, FabTextiles, Fab Lab Barcelona, 2018

Bioplastic gelatine+spirulina sample by Margaret Dunne, FabTextiles, Fab Lab Barcelona, 2018

Bio-composite gelatine+burlap sample by Margaret Dunne, FabTextiles, Fab Lab Barcelona, 2018

Bioplastic gelatine foam sample by Margaret Dunne, FabTextiles, Fab Lab Barcelona, 2018

.

Bioplastic cook book by Margaret Dunne, FabTextiles, Fab Lab Barcelona, 2018

.

.

And if you’d like to know more about the general history of bioplastics, when, where and why they were created you can check our first published book:

 The Secrets of Bioplastics by Clara Davis here.

.

.

class="post-2591 post type-post status-publish format-standard has-post-thumbnail hentry category-colaboraciones category-fab-lab-barcelona category-fab-textiles category-materials tag-activated-charcoal tag-architecture tag-bio-filter tag-biomaterial tag-bioplastic tag-clara-davis tag-design tag-fab-lab-barcelona tag-fab-textiles tag-maria-luisa tag-restology tag-sustainable">

Bio Filter : bioplastic + activated charcoal

In 1831, Mr. Touery, a professor at the French Academy of Medicine, drank strychnine, a deadly poison, in front of all his colleagues. He survived. How ? He had combined the lethal dose with activated charcoal. “That’s how powerful activated charcoal is as an emergency decontaminant in the gastrointestinal (GI) tract, which includes the stomach and intestines. Activated charcoal is considered to be the most effective single agent available. It is used after a person swallows or absorbs almost any toxic drug or chemical.”*

Diagram displaying the major health effects of air pollution, CEDIM Lab by Restology project, 2017

.

Last year Fab Textiles worked on a flexible bio filter design to reduce the pollution of Monterrey, the most polluted city in Mexico. This research was undertaken for an architecture project named Restology, a multidisciplinary project between architects, interior designers, product designers, fashion designers, material designers, graphic designers, electronic engineers and marketing strategists. During one month, Maria Luisa Becerril and I collaborated at Fab Textiles, Fab Lab Barcelona on the development of a bio-composite made of bioplastic mix with activated charcoal.

.

Grains of activated charcoal, Fab Textiles, Fab Lab Barcelona, 2017

Liquid mixture of bioplastic and activated charcoal, CEDIM Lab by Restology project, 2017

 

Activated charcoal is one material that seems especially applicable to Fab Lab makers, because of its ecologically sound and purifying properties. It is essentially a form of incredibly microporous carbon, processed from natural carbon-rich materials by applying various gases or chemicals to ‘burn’ in tiny holes and thus exponentially increasing its surface area. The result ? A material that can efficiently filter out all manner of impurities and toxins. A super-sponge, if you will. Bioplastics present themselves as an excellent and similarly sustainable substrate for activated charcoal with a wide range of uses.

.

Bio-composite module tests, CEDIM Lab by Restology project, 2017

.

During the material research, Maria Luisa and I tried out 10 different recipes to discover the correct ratio of ingredients that provided the most appropriate amount of flexibility for using activated charcoal as a filter. For this research, we decided to use gelatin as our biopolymer and glycerol as our plasticizer. By experimenting with the quantities of glycerol relative to activated charcoal, one can influence the degree of flexibility of the mixture. Maria Luisa told me that in the previous experiments  with her team, the issue was that the samples were cracking  after the drying process. Probably because the bioplastic mixture was containing too much activated charcoal according to the glycerol ratio.

.

Bio-composite recipe experimentations, Fab Textiles, Fab Lab Barcelona, 2017

.

At the end of the experiments, we succeeded to have good results, with samples with different flexibility (hard like a rock to flexible like rubber) and textures (Rough to Smooth and Matte to Shiny). I noticed that some of the samples were conductive, an interesting fact that we could use for future e-textiles and wearables.

.

Bio-composite recipe experimentations, Fab Textiles, Fab Lab Barcelona, 2017

.

Samples

Water

Gelatin

Activated Charcoal

Glycerol

Flexibility

Texture

Conductivity

Resistance

10 cm

#1

100 ml

25 g

15 g

No

Hard

Smooth & Matte

Conductive

80 – 200 Ohm

#2

100 ml

25 g

15 g

10 g

Hard

Smooth & Matte

Conductive

100 – 200 Ohm

#3

100 ml

25 g

15 g

25 g

Very Flexible

Smooth & Shiny

Conductive

150 – 200 Ohm

#4

100 ml

25 g

15 g

35 g

Very Flexible

Smooth & Shiny

Non conductive

#5

100 ml

25 g

5 g

10 g

Flexible

Rough & Shiny

Non conductive

#6

100 ml

26 g

16 g

10 g

Shapeable

Rough & Shiny

Conductive

100 – 200 Ohm

#7

100 ml

16 g

16 g

10 g

Flexible

Smooth & Matte

Conductive

150 – 200 Ohm

#8

100 ml

50 g

16 g

10 g

Bendable

Rough & Matte

Non conductive

#9

70 ml

26 g

16 g

10 g

Flexible

Rough & Matte

Non conductive

#10

130 ml

26 g

16 g

20 g

Flexible

Rough & Matte

Non

Conductive

.

Some samples made for the Restology project were sent to the laboratory to be tested. The scan of electrons viewed in the microscope shows that the best recipe for creating a bio filter is one with the greatest amount of activated charcoal and almost as much glycerol as gelatin for better flexibility. The amount of ingredients use for this recipe is 20% glycerol , 28% gelatin, 57% activated charcoal and 14% water. Compared to the others, this recipe presented the highest average pore-size of 50μm, “creating a set of thin porous walls one behind another with inside cavities allowing the filtration of air pollutants.”**

.

Microscope scan of the bio-composite electrons, CEDIM Lab by Restology project, 2017

.

The laboratory analysis proved that one of the activated charcoal and bioplastic mixture was porous enough to fix pollutant particles. To validate the filtering potential of this bio-composite, the Restology researchers developed a machine measuring microparticles and gases such as NH3, Nox, Alcohol, Benzen, Smoke, CO2… This two-chambered device contains an Arduino system connected to two sensors : one reading dust density (GP2Y1010AU0F sensor) and one calculating air quality (MQ135 sensor). The two chambers are separated by the bio-composite filter, the polluted air is introduced in the first chamber, measured, and then remeasured in the second chamber after passing through the bio filter.

.

Data compilation machine : measuring air particles and gas, CEDIM Lab by Restology project, 2017

.

3 Days try out results, data compilation machine : measuring air particles and gas, CEDIM Lab by Restology project, 2017

.

OUTDOOR & INDOOR RESTOLOGY MODULE

Outdoor filter module : concrete, bioplastic and activated charcoal, CEDIM Lab by Restology project, 2017

.

Indoor filter module : bioplastic and activated charcoal, CEDIM Lab by Restology project, 2017

.

* E-Medecine Health Article, Medical Author: John P.Cunha, DO, FACOEP and Medical Editor: Melissa Conrad Stoppler, MD, Chief Medical Editor / Medically reviewed by John A. Daller, MD; American Board of Surgery with subspecialty certification in surgical critical car.

 

** Restology, absorption of suspended particles through bioplastic and activated charcoal, multidisciplinary thesis, Centro de Estudios Superiores de Diseno de Monterrey S.C., 7 December 2017.

 

Restology project by Monterrey Center for Higher Learning of Design (CEDIM University), Monterrey Mexico, Architecture Department Direction :

Project Leader : Yessica Mendez Sierra

Students : Ada Gloria Gonzalez Mireles, Ana Graciela Gonzalez Sanchez, Ana Maria Vargas Lasserre, Andrea Lizette Najera Rodriguez, Bárbara Garza Saldaña, Carla Ruizvelasco Garza, Cristina Adriana Briones Nuñez, Dana Mayeli Rangel Torres, Estefanía Flores Jiménez, Juana Valeria Gonzalez Ortiz, Kathia Quintanilla Garcia, Maria De Lourdes Hernández Lima, Maria Luisa Becerril Garcia, Mayra Valeria Moreira Balderas, Melissa Chapa Gil, Oscar Javier Alvarado Contreras, Priscila Luna Ramos, Roberto Luis Valenzuela Cortazar, Sara Eugenia Gonzalez Mascareñas, Veronica Saldaña Garza

 

-> About Restology project : https://www.trendhunter.com/trends/reduce-air-pollution

 

Article written by Clara Davis

class="post-2524 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-lab-barcelona category-fab-textiles category-materials category-talleres tag-bacteria-textile-dyeing tag-tcbl tag-textilelabamsterdam">

BioShades Workshop & Talks

Workshop  Thursday, March 15, 2018, - 15:00 to 18:00 
Talks     Thursday, March 15, 2018, - 20:00 to 22:00
Location : MAZDA SPACE, Carrer Commerc 60
The entrance to this event is free. There are limited spots available. 
You can register HERE for the workshop
You can register HERE for the TALKS



BioShades is coming to a TCBL Lab near you!  
Learn how to dye fabrics with bacteria together with other participants across Europe. 
During this BioShades event TextileLab Amsterdam will connect with labs across Europe and dye textile with bacteria together! 
BioShades exists of a hands-on workshop and evening lectures with experts from the field. 
The whole event will take place at TextileLab Amsterdam – Waag, but you can join in different TCBL labs across Europe. 
Fab Textiles is one of the TCBL participating labs, offering the workshop and the live streaming of the talks.

Could dyeing with bacteria be an alternative to chemical dyes? With BioShades we explore the potential of dyeing with bacteria as a less harmful 
alternative in TextileLab Amsterdam and the participating TCBL labs. The upcoming BioShades event on 15 March 2018 there will be a workshop and talkshow during which we explore 
dyeing with bacteria together.The workshop takes place at TextileLab Amsterdam – Waag and streamed live in different TCBL labs across Europe where local instructors while lead you through the process step by step. 

During this TCBL BioShades event labs across Europe will connect through a video conferencing system and address this issue during a distributed 
bacteria dyeing workshop and an evening talks that gives the floor to experts from different fields.
BioShades is part of TCBL [tcbl.eu/content/bioshades] that aims to renew the European Textile & Clothing sector. 
We explore new ways to design, make, and work together and inventing new business models to open up new markets. 
BioShades is one of the research topics. Join the event and connect to the TCBL BioShades network and other people interested in this topic.

Program (CET) BioShades Workshop (limited places available)
-14.30 Doors open
-15.00 Start workshop: get to know the other workshop participants across Europe!
-15.15 Introduction of bacteria dyeing
-15.30 Hands-on workshop
-17.30 Instructions for next steps
-18.00 End workshop

Program (CET) BioShades evening TALKS (open to the public)
The entrance to this event is free. There are limited spots available.Please register HERE
Did you know that in the textile industry one the most environmentally disastrous processes is the dyeing of fibers and textiles?  
-19:30 Doors open
-20:00-22:00  Talks via streaming
During two hours we give the floor to experts from different fields, explore the potential of bacteria dyeing together and connect to different participating TCBL labs on the spot!
The BioShades talks follow up on the BioShades workshop in the afternoon.The exact program and speakers of this evening will be announced soon.

Participating TCBL labs 
-Fab Textiles – Barcelona, Spain 
-Fabrica Arca – Palermo, Italy 
-Textile Museum – Prato, Italy 
-Lottozerro – Prato, Italy 
-Redu Place Lab - Iași, Romania 
-Oliva Creative Lab - São João da Madeira, Portugal 
-Sanjotec Design Lab - São João da Madeira, Portugal 
-FabLab Kamp-Lintfort - Kamp-Lintfort, Germany

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 646133.

Join BioShades distributed workshop and let’s push the boundaries of the textile and clothing industry together!

       

class="post-2298 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-textiles category-materials category-products category-tutoriales tag-biobags tag-bioplastic tag-clara-davis tag-diy tag-fabtextiles">

BioBags collection

“Today, my driving motivation is to discover methods, materials that are ethically sound and sustainable.” Clara Davis

This BioBags collection, created by Clara Davis from the FabTextiles at Fab Lab Barcelona, is an environmental project about how to replace plastic bags and daily life packaging with biodegradable materials. A plastic bag takes about 450 years to disintegrate in nature. Those three BioBags, made with gelatin base bioplastic are completely biodegradable. It takes about one week to dissolve completely in the water.

Gelatin base bioplastic is a recipe with 100% natural ingredients : 78% of water, 16% of gelatin and 6% of glycerol. With this recipe you can cook a strong material. The difference between gelatin bioplastic and petroleum plastic is that bioplastic is not long-term resistant to heat (more than 40°) and water (more than one week). That’s why it’s so easy to recycle it.

For now the problem is still the price of creation, too high to considerate the BioBags collection just like simple packaging. It’s costing approximately 80 euros to create one BioBag : price of material, design, machine and time of work. You should know that gelatin base bioplastic takes about one week to dry. A long cooking process before starting to laser cut the BioBag.

The BioBag collection stay at the moment a project between Art & Design but with financial investment we can easily imagine a biodegradable industry coming in a near future.

-> Create your own Biobag

-> Print your bioplastic recipe

-> Learn more about bioplastic

-> Buy a BioBag at Lottozero shop online

 

 

class="post-2237 post type-post status-publish format-standard hentry category-3d-print category-colaboraciones category-exhibitions category-fab-lab-barcelona category-fab-textiles category-materials category-recycling category-tutoriales tag-3d-printed-top tag-anastasia-pistofidou tag-bioplastic tag-clara-davis tag-fabtextiles tag-maker-faire tag-origami-hat tag-seamless-garment tag-workshop">

Barcelona Maker Faire 2017

barcelona maker faire 2017

This year the team FabTextiles (Fab Lab Barcelona) of Anastasia Pistofidou and Clara Davis participated to the Maker Faire Barcelona 2017.

Maybe you are wondering what is a MakerFaire ? A Maker Faire is a world event gathering makers : creators, innovative craftsmans, inventors and engineers. This Maker Movement is about using technology, creating new ways to produce together, learning how to do it yourself for changing our industry. The first Maker Faire was established by Dale Dougherty, one of the creators of Make Magazine, in San Mateo, California, in 2006. The goal is to introduce to the people the latest inventions and innovations, to teach them how to do it themselves with workshops, to discuss with them about different topics and to allow makers to meet each other and share their knowledge.

 stand fabtextiles barcelona maker faire 2017 Fab Textiles stand at the Barcelona Maker Faire 2017

For the Maker Faire Barcelona 2017, FabTextiles presented :

  • three pieces of the ECOcyborg collection thought by Alex-Murray Leslie, a collaborative work with IED school and FabTextiles (Fab Lab Barcelona)
  • a laser cut parametric origami hat and two seamless garment design by Anastasia Pistofidou
  • a 3d printed top assembled by Clara Davis
  • a bioplastic collection of accessories created by Aldana Persia and Clara Davis

écocyborg Three looks of the ECOcyborg collection tought by Alex-Murray Leslie, a collaborative work with IED (Istituto Europeo di Design) Barcelona and Fab Textiles (Fab Lab Barcelona). First look, electroluminescent woven shoulder piece on top of a laser cut petticoat. Second look, retro-futuristic biopastic shirt made with ultraviolet colors pigments. Third look, 3d printed chainmail coating dress.

3d printed top copie 3d printed top, chainmail assembled by Clara Davis, you can follow the DIY on this page.

table3 copiebioplastic collectionBioplastic Collection of accessories created by Aldana Persia & Clara Davis

FabTextiles showed but also shared. On their booth, they revealed to the public The secrets of bioplastic and gave the opportunity to learn how to do it yourself by distributing the recipe used for the Bioplastic Collection. Anastasia Pistofidou animated the discussion about embedding digital and Bio Technology in Fashion and Clara Davis gave two workshops : learn how to fold a stone paper origami hat and create your own jewelry with the bioplastic collection waste.

workshop1 workshop2 people1 people2    people3people5Workshops : learning how to fold a parametric stone paper origami hat and creating jewelry with bioplastic collection waste.

Thanks to the FabTextiles team : Anastasia Pistofidou, Clara Davis, Aldana Persia and Sabina Micheli

class="post-2099 post type-post status-publish format-standard has-post-thumbnail hentry category-3d-print category-fab-textiles category-materials category-recycling tag-3d-printed-fashion tag-alex-murray-leslie tag-anastasia-pistofidou tag-anna-masclans tag-bioplastic tag-clara-davis tag-fabtextiles tag-thermoformed-acrylic tag-woven-electroluminescent-threads tag-yomo-festival">

“ECOcyborg” YoMo festival 2017

ECOcyborg is a fashion tech show created by Alex-Murray Leslie and the students of the IED (Istituto Europeo di Design) Barcelona. This artistic performance is about the impact of technologies in our way of creating, producing and consuming today. The show took place in the Youth Mobile Festival (YoMo) during the Mobile World Congress 2017 (27 February – 2 March) in Barcelona.

During the last two months, the team of FabTextiles collaborated on this project by designing and producing materials used for making the garments of the show : bioplastics, 3d printed fabrics, thermoformed acrylic masks, laser cut textiles, weaving with electroluminescent threads…alex murray leslie yomo Alex-Murray Leslie (founder of Chicks on Speed, an internationally renowned art band) during the performance “ECOcyborg” at the YoMo Festival 2017.

  • BIOPLASTIC WORK : USING BIODEGRADABLE MATERIAL AS A FABRIC (You can find more information about bioplastic in this previous post → The secrets of Bioplastic)anastasia pistofidou & alex murray leslie fabtextile Anastasia Pistofidou and Alex-Murray Leslie creating bioplastic in FabTextiles and Materials Lab.

We cooked a huge quantity of bioplastic with gelatin base for making a flat piece of 2000×1500 mm. Adding ultraviolet colors pigment inside the mixture to make the bioplastic shining in the dark. This bioplastic piece was used by the students of IED Barcelona to create a futuristic shirt for the show.bioplastic creation yomo bioplastico

Anna Masclans, a student from the IED school interning in the FabTextiles, create a new type of material by combining wastes of fabrics with bioplastic. A nice way to recycle the textile leftovers when people make garments inside fashion schools. Her samples were used as patchwork for one look in the show.anna masclans bio+fabrics

  • 3D PRINTED FABRICS : USING SOFTWARE AND 3D PRINT MACHINE FOR CREATING GARMENTS

Anastasia Pistofidou design on the software Rhinoceros and Grasshopper a chain for printing in 3D.  The 3D printed chain like textile allows to print a pattern made of small rigid volumes that assembled together becomes a flexible material. The students from IED Barcelona took the chain for making the coating of a dress.3D print fabrics 3D print fashion tech show

  • THERMOFORMED ACRYLIC : It’s possible to deform an acrylic sheet by heating it up to 160degrees and using a vacuum forming machine. You can give to the acrylic sheet the shape you want by using a mold. For creating those thermoformed acrylic masks Anastasia Pistofidou 3Dmodel a human face made in MakeHuman software. The next step is to CNC mill the piece of PU high density foam (can be negative or positive. After, the 2d pattern is laser cut on an acrylic sheet of 3mm and finally heated-up and placed it on the foam face and put it under the vacuum forming machine. 3C2A3092mask thermo fashion tech show
  • WOVEN ELECTROLUMINESCENT THREADS : During the last day of the Textile Bootcamp Academy, a group mentored by Alex-Murray Leslie developed a woven piece that embedded Corning Fibrance Light-Diffusing Fibers from Versalume, reflective textiles and recycling elements like plastics bags and packaging papers. The loom used for creating the weaving was laser cut and built in the Fab lab from an open source file found in instructubles. The final woven piece became a shoulder piece inside a laser cut petticoat.
    weavingg weaving laser cut fashion show yomo

Inside the FabTextiles Lab we question ourselves about the future of textiles, technology and try to find hands ON ways to change the fashion industry. We using technology to create our own tools and discover new materials.

«Ha sido increíble colaborar con Anastasia Pistofidou y Fab Lab Barcelona en la creación de nuevos textiles hechos de materiales ecológicos, para el wearable tech fashion show que estoy dirigiendo para YOMO»
Alex Murray-Leslie

Fabtextiles team : Anastasia Pistofidou, Anna Masclans, Aldana Persia, Laura Ramos & Clara Davis

PRESS:

Betevé, reportage of 3 minutes
– Diari Ara 
– El Mundo – Innovadores 
– It Fashion
class="post-1849 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-textiles category-materials tag-anastasia-pistofidou tag-bioplastics tag-clara-davis tag-diy-matter tag-fabtextiles tag-workshops-fab-lab">

The secrets of Bioplastic

bioplasticsamples
bioplastic layers bioplastic black

During a week we created samples of bioplastic with gelatin base, experimenting and testing the limits of this material.
Bioplastic made with gelatin base is a renewable biological raw material fabricated with only vegetable matter. It's a simple recipe than anyone can try at home you just need gelatin, glycerol and water. 
You can find the recipe and the explanations step by step of how to make bioplastic in the pdf "The secrets of bioplastic" at the end of this post.  
materiel bioplastic
cooking & drying process bioplastic
You can get different harness or (elasticity) depending on the quantity of glycerol you put inside your mixture. 
You can also change the opacity and the texture by creating foam with spitting air inside the heated mix.

bioplasticfoams
You can try to mix bioplastic with many materials like fabrics, fibers, threads, pigments, tape, wood, metal...

bioplasticfibres

bioplastic plastic

bioplastic fabric tape
You can also decide to not put any other material than bioplastic and just play with the textures and the patterns you can make.

bioplasticfabrics

bioplastic fabric

bioplastic fabric pattern
During our experimentation we discovered than bioplastic :
- can take any shape (volume, surface, sheet...)
- can have different performance by changing the dosages of water, gelatin and glycerol (elastic -> rigid)
- can be transparent & smooth or opaque & fluffy if you add air inside the mix
- can dissolve in the water (it is not water resistant)
- can be easily recycled and reused by warming it again
- don’t smell good (especially when you cook it, once dry the smell begins to fade)
- glues to wood, metal, cardboard but not on glass of plastic surface
- doesn’t resist the heat (never put bioplastic in the oven, it will melt !)
- if you create a  large volume of bioplastic it will tend to mold
- it will shrink and change its shape while it dries (use a frame if you don't want it to lose it's shape)
If you are curious you can read and learn more about bioplastic inside this pdf "The secret of bioplastic".

class="post-1651 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-textiles category-materials category-products category-tutoriales tag-fab-lab-barcelona tag-fab-textiles tag-jewelry tag-laser-cutting tag-wooden-textile">

Wooden Textile Bracelet

IMG_04192

What do you need:
veneers
textile (denim)
woodglue + brush or paint roller
vacuum press
lasercutter (trotec speedy 100)
rhinoceros
4 buttons (for cling sealing)
rivet gun for buttons

tools

How to do:
Connecting fabric and wood
1. Cut your fabrics and veneers in nearly the same size
2. Brush one side of the wood with the woodglue and put it on the fabric (ensure that the fabric is flat). For a better result we recommend, to do it with the paint roller, so that the glue is very thin and evently distributed
3. Now, place the two materials into a vaccum press and wait until the materials get connected and dried

 

IMG_0399 IMG_0404

IMG_0403

IMG_0406

IMG_0408

Preparing the Lasercut
Meanwhile you can create your File for the lasercut. You can do that in Adobe Illustrator (save as DXF) or directly in Rhinoceros. The lines should be colored red for cutting.
You have to think about how you want to connect the bracelet (we choose the buttons).
Our Example, you can download here.

rhino1

Lasercutting the wooden-textile
1. For a good result (only the wood gets cut) you need the the right power and speed for the lasercut-settings
Here you can see some examples made with the Trotec Speedy 100:

IMG_0417

01 1.5mm wood + denim Power:70 Speed:3
02 1 mm wood + denim Power:50 Speed:4
03 0.5mm wood + synthetic fabric Power:50 Speed:5
04 1mm wood + synthetic fabric Power:50 Speed:4
05 1mm wood + very thin synthetic fabric Power:57 Speed:7
2. First do the engraving (the pattern), after, the cutting part (the shape)
3. For cutting you just have to put the power to a higher value ( f.e.: 50 > 90)

Finishing
Now you can finish your piece by attaching the buttons to the blacelet. For that you just need the appropriate rivet gun or tool.

IMG_0418

 

class="post-1617 post type-post status-publish format-standard has-post-thumbnail hentry category-materials category-tutoriales tag-bio-couture tag-bio-plastics tag-bioplastic tag-fab-lab-barcelona tag-fab-textiles tag-material-catalogue tag-soft-fabrication">

Material catalogue Bioplastics & Biocouture

Work and Progress within the Seminar Skin2

Bioplastics Catalogue:

Discover the Bioplastic recipe here

Tests on overlapping layers of bioplastic sheets that are mixed with thermochromic ink.5

Tests on adding carbon fibres for conductivity on bioplastic6

Bioplastic with different color pigments and amount of glycerol to adjust flexibilityfoto1

Bioplastic with conductive thread and thermochromic ink34-35-730x518

Molding and Casting Bioplastic onto CNC milled wood58-59-730x518

Biocouture Catalogue:

Discover the Biocouture recipe here

Methods to combine the Biocouture with different materials5_BIO[lum]SKINLarge Scale Biocouture growth of 2cm thick (30 days)kombucha-growth-730x335

biocoture-1lk

biocoture-2lk

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.