class="post-3258 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-textiles tag-biofabrication tag-biofashion tag-biomaterial tag-bioplastic tag-dlab tag-fabtextiles tag-munoz tag-nomoreplastic tag-pistofidou tag-sustainable-fashion">

DLab Artistic Residency

In January 2019 I had the amazing opportunity to be invited for an artistic residency and workshop at DLab USFQ in Ecuador by my very good friend and amazing researcher Cristina Muñoz to work together on Biofabricated textiles based on starch and natural colorants.

Our collaboration began in 2017, through a collaboration fund from the Universidad de San Francisco, on biomaterials applied to textile fabrication that allowed us to work in distance as co-researchers together with a team of chemical engineers and designers from Ecuador. I was in charge of the methodological supervision in prototyping bio-fabrics and assessing the development of the biomaterials, the fabrication techniques and the product design. As the conclusion of the project, I was invited for a three week artistic residency together with a series of workshops and a public lecture at USFQ.

During the residency we explored  developed further the recipes of starch based bioplastics, explored natural colorants, codesigned a series of garments and established the fabrication protocols for producing them. We experimented with cochineal, since Ecuador has large production of this natural red colorant, whose primary constituent is carminic acid, that is made of the dried and pulverized bodies of female cochineal insects and is used to color food and cosmetics. (freedictionary)

The pattern of this soluble swimsuit aims to bring awareness around the “plastic floating islands” that travel in the open sea.

The pattern was made by using a database by the Sea Education Association showing the urgency

Floating plastic debris sampling in the North Atlantic, by the Sea Education Association.

You can see this data in this interactive map and read the article here

The different laser cut layers for the swimsuit>

Starch based Bioplastic with Cochineal (top + skirt)

You can find the downloadable patterns at OS circular fashion

Research references

class="post-2960 post type-post status-publish format-standard has-post-thumbnail hentry category-materials category-products category-recycling tag-biobags tag-biodegradable-garments tag-biofabrication tag-biolab tag-bioleather tag-biomaterial tag-bioplastics tag-laser-cut-fashion tag-modular tag-recycling-2">

Coffee BIO-Leather Bag

Your waste is my treasure!
Working with organic waste can bring circular solutions  for the implementation of closed loops of organic feedstocks.  At Fab Textiles we have been working with food waste since October 2018 and many researchers through their internship developed and evolved recipes for making food waste biocomposites.  There are already some small companies that produce bioleathers with waste, one of them from Mexico called ECOPLASO that I had the possibility to get to know in one of my conferences at ¨Demand Solutions¨ in Miami 2018.



2G sodium alginate
2G dried coffee grains of any organic waste in powder
2G olive oil
5G glycerin
33G water 
(everything is in grams using a precision scale)

MIX for calcification
7G of calcium chloride in 100ml of water

Various organic waste bio-leather samples



1- Weight all the ingredients with a precision scale.
2- Mix the powder together with the glycerin and the olive oil.
3- Add the water and use a mechanical blender to obtain an homogeneous solution.
4- Cast in a silk screen print frame ( you can create your own using any textile and wood)
5- Mix the Calcium chloride with water in a sprayer bottle.
6- Spray the biomaterial on top and bottom with the calcium chloride solution.
7- Let the calcium chloride act for 5´ and rinse with clean water.
8- Let the composite sample dry in a dry and warm place for one week. Depending on the thickness and the size of the sample it may take longer. It will also vary due to the local temperature and humidity.
9- When the product is dry you can separate it from the frame.

Note: As the sample dries, it can become curved, so place it between two level surfaces and some weight on top so at the end we can obtain a really flat sheet




The laser cut pattern can be found and downloaded HERE