bioplastic

class="post-3258 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-textiles tag-biofabrication tag-biofashion tag-biomaterial tag-bioplastic tag-dlab tag-fabtextiles tag-munoz tag-nomoreplastic tag-pistofidou tag-sustainable-fashion">

DLab Artistic Residency

In January 2019 I had the amazing opportunity to be invited for an artistic residency and workshop at DLab USFQ in Ecuador by my very good friend and amazing researcher Cristina Muñoz to work together on Biofabricated textiles based on starch and natural colorants.

Our collaboration began in 2017, through a collaboration fund from the Universidad de San Francisco, on biomaterials applied to textile fabrication that allowed us to work in distance as co-researchers together with a team of chemical engineers and designers from Ecuador. I was in charge of the methodological supervision in prototyping bio-fabrics and assessing the development of the biomaterials, the fabrication techniques and the product design. As the conclusion of the project, I was invited for a three week artistic residency together with a series of workshops and a public lecture at USFQ.

During the residency we explored  developed further the recipes of starch based bioplastics, explored natural colorants, codesigned a series of garments and established the fabrication protocols for producing them. We experimented with cochineal, since Ecuador has large production of this natural red colorant, whose primary constituent is carminic acid, that is made of the dried and pulverized bodies of female cochineal insects and is used to color food and cosmetics. (freedictionary)

The pattern of this soluble swimsuit aims to bring awareness around the “plastic floating islands” that travel in the open sea.

The pattern was made by using a database by the Sea Education Association showing the urgency

Floating plastic debris sampling in the North Atlantic, by the Sea Education Association.

You can see this data in this interactive map and read the article here

The different laser cut layers for the swimsuit>

Starch based Bioplastic with Cochineal (top + skirt)

You can find the downloadable patterns at OS circular fashion

Research references

class="post-2591 post type-post status-publish format-standard has-post-thumbnail hentry category-colaboraciones category-fab-lab-barcelona category-fab-textiles category-materials tag-activated-charcoal tag-architecture tag-bio-filter tag-biomaterial tag-bioplastic tag-clara-davis tag-design tag-fab-lab-barcelona tag-fab-textiles tag-maria-luisa tag-restology tag-sustainable">

Bio Filter : bioplastic + activated charcoal

In 1831, Mr. Touery, a professor at the French Academy of Medicine, drank strychnine, a deadly poison, in front of all his colleagues. He survived. How ? He had combined the lethal dose with activated charcoal. “That’s how powerful activated charcoal is as an emergency decontaminant in the gastrointestinal (GI) tract, which includes the stomach and intestines. Activated charcoal is considered to be the most effective single agent available. It is used after a person swallows or absorbs almost any toxic drug or chemical.”*

Diagram displaying the major health effects of air pollution, CEDIM Lab by Restology project, 2017

.

Last year Fab Textiles worked on a flexible bio filter design to reduce the pollution of Monterrey, the most polluted city in Mexico. This research was undertaken for an architecture project named Restology, a multidisciplinary project between architects, interior designers, product designers, fashion designers, material designers, graphic designers, electronic engineers and marketing strategists. During one month, Maria Luisa Becerril and I collaborated at Fab Textiles, Fab Lab Barcelona on the development of a bio-composite made of bioplastic mix with activated charcoal.

.

Grains of activated charcoal, Fab Textiles, Fab Lab Barcelona, 2017

Liquid mixture of bioplastic and activated charcoal, CEDIM Lab by Restology project, 2017

 

Activated charcoal is one material that seems especially applicable to Fab Lab makers, because of its ecologically sound and purifying properties. It is essentially a form of incredibly microporous carbon, processed from natural carbon-rich materials by applying various gases or chemicals to ‘burn’ in tiny holes and thus exponentially increasing its surface area. The result ? A material that can efficiently filter out all manner of impurities and toxins. A super-sponge, if you will. Bioplastics present themselves as an excellent and similarly sustainable substrate for activated charcoal with a wide range of uses.

.

Bio-composite module tests, CEDIM Lab by Restology project, 2017

.

During the material research, Maria Luisa and I tried out 10 different recipes to discover the correct ratio of ingredients that provided the most appropriate amount of flexibility for using activated charcoal as a filter. For this research, we decided to use gelatin as our biopolymer and glycerol as our plasticizer. By experimenting with the quantities of glycerol relative to activated charcoal, one can influence the degree of flexibility of the mixture. Maria Luisa told me that in the previous experiments  with her team, the issue was that the samples were cracking  after the drying process. Probably because the bioplastic mixture was containing too much activated charcoal according to the glycerol ratio.

.

Bio-composite recipe experimentations, Fab Textiles, Fab Lab Barcelona, 2017

.

At the end of the experiments, we succeeded to have good results, with samples with different flexibility (hard like a rock to flexible like rubber) and textures (Rough to Smooth and Matte to Shiny). I noticed that some of the samples were conductive, an interesting fact that we could use for future e-textiles and wearables.

.

Bio-composite recipe experimentations, Fab Textiles, Fab Lab Barcelona, 2017

.

Samples

Water

Gelatin

Activated Charcoal

Glycerol

Flexibility

Texture

Conductivity

Resistance

10 cm

#1

100 ml

25 g

15 g

No

Hard

Smooth & Matte

Conductive

80 – 200 Ohm

#2

100 ml

25 g

15 g

10 g

Hard

Smooth & Matte

Conductive

100 – 200 Ohm

#3

100 ml

25 g

15 g

25 g

Very Flexible

Smooth & Shiny

Conductive

150 – 200 Ohm

#4

100 ml

25 g

15 g

35 g

Very Flexible

Smooth & Shiny

Non conductive

#5

100 ml

25 g

5 g

10 g

Flexible

Rough & Shiny

Non conductive

#6

100 ml

26 g

16 g

10 g

Shapeable

Rough & Shiny

Conductive

100 – 200 Ohm

#7

100 ml

16 g

16 g

10 g

Flexible

Smooth & Matte

Conductive

150 – 200 Ohm

#8

100 ml

50 g

16 g

10 g

Bendable

Rough & Matte

Non conductive

#9

70 ml

26 g

16 g

10 g

Flexible

Rough & Matte

Non conductive

#10

130 ml

26 g

16 g

20 g

Flexible

Rough & Matte

Non

Conductive

.

Some samples made for the Restology project were sent to the laboratory to be tested. The scan of electrons viewed in the microscope shows that the best recipe for creating a bio filter is one with the greatest amount of activated charcoal and almost as much glycerol as gelatin for better flexibility. The amount of ingredients use for this recipe is 20% glycerol , 28% gelatin, 57% activated charcoal and 14% water. Compared to the others, this recipe presented the highest average pore-size of 50μm, “creating a set of thin porous walls one behind another with inside cavities allowing the filtration of air pollutants.”**

.

Microscope scan of the bio-composite electrons, CEDIM Lab by Restology project, 2017

.

The laboratory analysis proved that one of the activated charcoal and bioplastic mixture was porous enough to fix pollutant particles. To validate the filtering potential of this bio-composite, the Restology researchers developed a machine measuring microparticles and gases such as NH3, Nox, Alcohol, Benzen, Smoke, CO2… This two-chambered device contains an Arduino system connected to two sensors : one reading dust density (GP2Y1010AU0F sensor) and one calculating air quality (MQ135 sensor). The two chambers are separated by the bio-composite filter, the polluted air is introduced in the first chamber, measured, and then remeasured in the second chamber after passing through the bio filter.

.

Data compilation machine : measuring air particles and gas, CEDIM Lab by Restology project, 2017

.

3 Days try out results, data compilation machine : measuring air particles and gas, CEDIM Lab by Restology project, 2017

.

OUTDOOR & INDOOR RESTOLOGY MODULE

Outdoor filter module : concrete, bioplastic and activated charcoal, CEDIM Lab by Restology project, 2017

.

Indoor filter module : bioplastic and activated charcoal, CEDIM Lab by Restology project, 2017

.

* E-Medecine Health Article, Medical Author: John P.Cunha, DO, FACOEP and Medical Editor: Melissa Conrad Stoppler, MD, Chief Medical Editor / Medically reviewed by John A. Daller, MD; American Board of Surgery with subspecialty certification in surgical critical car.

 

** Restology, absorption of suspended particles through bioplastic and activated charcoal, multidisciplinary thesis, Centro de Estudios Superiores de Diseno de Monterrey S.C., 7 December 2017.

 

Restology project by Monterrey Center for Higher Learning of Design (CEDIM University), Monterrey Mexico, Architecture Department Direction :

Project Leader : Yessica Mendez Sierra

Students : Ada Gloria Gonzalez Mireles, Ana Graciela Gonzalez Sanchez, Ana Maria Vargas Lasserre, Andrea Lizette Najera Rodriguez, Bárbara Garza Saldaña, Carla Ruizvelasco Garza, Cristina Adriana Briones Nuñez, Dana Mayeli Rangel Torres, Estefanía Flores Jiménez, Juana Valeria Gonzalez Ortiz, Kathia Quintanilla Garcia, Maria De Lourdes Hernández Lima, Maria Luisa Becerril Garcia, Mayra Valeria Moreira Balderas, Melissa Chapa Gil, Oscar Javier Alvarado Contreras, Priscila Luna Ramos, Roberto Luis Valenzuela Cortazar, Sara Eugenia Gonzalez Mascareñas, Veronica Saldaña Garza

 

-> About Restology project : https://www.trendhunter.com/trends/reduce-air-pollution

 

Article written by Clara Davis

class="post-2298 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-textiles category-materials category-products category-tutoriales tag-biobags tag-bioplastic tag-diy tag-fabtextiles">

BioBags collection

This BioBags collection, created by Clara Davis  as part of her training internship at the lab. It is an environmental project about how to replace plastic bags and daily life packaging with biodegradable materials. A plastic bag takes about 450 years to disintegrate in nature. Those three BioBags, made with gelatin base bioplastic are completely biodegradable. It takes about one week to dissolve completely in the water. This project comes as a research outcome of  Biomaterial practices at FabTextiles at Fab Lab Barcelona.

Gelatin base bioplastic is a recipe with 100% natural ingredients : 78% of water, 16% of gelatin and 6% of glycerol. With this recipe you can cook a strong material. The difference between gelatin bioplastic and petroleum plastic is that bioplastic is not long-term resistant to heat (more than 40°) and water (more than one week). That’s why it’s so easy to recycle it.

For now the problem is still the price of creation, too high to considerate the BioBags collection just like simple packaging. It’s costing approximately 80 euros to create one BioBag : price of material, design, machine and time of work. You should know that gelatin base bioplastic takes about one week to dry. A long cooking process before starting to laser cut the BioBag.

The BioBag collection stay at the moment a project between Art & Design but with financial investment we can easily imagine a biodegradable industry coming in a near future.

-> Create your own Biobag

-> Print your bioplastic recipe

-> Learn more about bioplastic

-> Buy a BioBag at Lottozero shop online

 

 

class="post-2237 post type-post status-publish format-standard hentry category-3d-print category-colaboraciones category-exhibitions category-fab-lab-barcelona category-fab-textiles category-materials category-recycling category-tutoriales tag-3d-printed-top tag-anastasia-pistofidou tag-bioplastic tag-clara-davis tag-fabtextiles tag-maker-faire tag-origami-hat tag-seamless-garment tag-workshop">

Barcelona Maker Faire 2017

barcelona maker faire 2017

This year the team FabTextiles (Fab Lab Barcelona) of Anastasia Pistofidou and Clara Davis participated to the Maker Faire Barcelona 2017.

Maybe you are wondering what is a MakerFaire ? A Maker Faire is a world event gathering makers : creators, innovative craftsmans, inventors and engineers. This Maker Movement is about using technology, creating new ways to produce together, learning how to do it yourself for changing our industry. The first Maker Faire was established by Dale Dougherty, one of the creators of Make Magazine, in San Mateo, California, in 2006. The goal is to introduce to the people the latest inventions and innovations, to teach them how to do it themselves with workshops, to discuss with them about different topics and to allow makers to meet each other and share their knowledge.

 stand fabtextiles barcelona maker faire 2017 Fab Textiles stand at the Barcelona Maker Faire 2017

For the Maker Faire Barcelona 2017, FabTextiles presented :

  • three pieces of the ECOcyborg collection thought by Alex-Murray Leslie, a collaborative work with IED school and FabTextiles (Fab Lab Barcelona)
  • a laser cut parametric origami hat and two seamless garment design by Anastasia Pistofidou
  • a 3d printed top assembled by Clara Davis
  • a bioplastic collection of accessories created by Aldana Persia and Clara Davis

écocyborg Three looks of the ECOcyborg collection tought by Alex-Murray Leslie, a collaborative work with IED (Istituto Europeo di Design) Barcelona and Fab Textiles (Fab Lab Barcelona). First look, electroluminescent woven shoulder piece on top of a laser cut petticoat. Second look, retro-futuristic biopastic shirt made with ultraviolet colors pigments. Third look, 3d printed chainmail coating dress.

3d printed top copie 3d printed top, chainmail assembled by Clara Davis, you can follow the DIY on this page.

table3 copiebioplastic collectionBioplastic Collection of accessories created by Aldana Persia & Clara Davis

FabTextiles showed but also shared. On their booth, they revealed to the public The secrets of bioplastic and gave the opportunity to learn how to do it yourself by distributing the recipe used for the Bioplastic Collection. Anastasia Pistofidou animated the discussion about embedding digital and Bio Technology in Fashion and Clara Davis gave two workshops : learn how to fold a stone paper origami hat and create your own jewelry with the bioplastic collection waste.

workshop1 workshop2 people1 people2    people3people5Workshops : learning how to fold a parametric stone paper origami hat and creating jewelry with bioplastic collection waste.

Thanks to the FabTextiles team : Anastasia Pistofidou, Clara Davis, Aldana Persia and Sabina Micheli

class="post-2099 post type-post status-publish format-standard has-post-thumbnail hentry category-3d-print category-fab-textiles category-materials category-recycling tag-3d-printed-fashion tag-alex-murray-leslie tag-anastasia-pistofidou tag-anna-masclans tag-bioplastic tag-clara-davis tag-fabtextiles tag-thermoformed-acrylic tag-woven-electroluminescent-threads tag-yomo-festival">

“ECOcyborg” YoMo festival 2017

ECOcyborg is a fashion tech show created by Alex-Murray Leslie and the students of the IED (Istituto Europeo di Design) Barcelona. This artistic performance is about the impact of technologies in our way of creating, producing and consuming today. The show took place in the Youth Mobile Festival (YoMo) during the Mobile World Congress 2017 (27 February – 2 March) in Barcelona.

During the last two months, the team of FabTextiles collaborated on this project by designing and producing materials used for making the garments of the show : bioplastics, 3d printed fabrics, thermoformed acrylic masks, laser cut textiles, weaving with electroluminescent threads…alex murray leslie yomo Alex-Murray Leslie (founder of Chicks on Speed, an internationally renowned art band) during the performance “ECOcyborg” at the YoMo Festival 2017.

  • BIOPLASTIC WORK : USING BIODEGRADABLE MATERIAL AS A FABRIC (You can find more information about bioplastic in this previous post → The secrets of Bioplastic)anastasia pistofidou & alex murray leslie fabtextile Anastasia Pistofidou and Alex-Murray Leslie creating bioplastic in FabTextiles and Materials Lab.

We cooked a huge quantity of bioplastic with gelatin base for making a flat piece of 2000×1500 mm. Adding ultraviolet colors pigment inside the mixture to make the bioplastic shining in the dark. This bioplastic piece was used by the students of IED Barcelona to create a futuristic shirt for the show.bioplastic creation yomo bioplastico

Anna Masclans, a student from the IED school interning in the FabTextiles, create a new type of material by combining wastes of fabrics with bioplastic. A nice way to recycle the textile leftovers when people make garments inside fashion schools. Her samples were used as patchwork for one look in the show.anna masclans bio+fabrics

  • 3D PRINTED FABRICS : USING SOFTWARE AND 3D PRINT MACHINE FOR CREATING GARMENTS

Anastasia Pistofidou design on the software Rhinoceros and Grasshopper a chain for printing in 3D.  The 3D printed chain like textile allows to print a pattern made of small rigid volumes that assembled together becomes a flexible material. The students from IED Barcelona took the chain for making the coating of a dress.3D print fabrics 3D print fashion tech show

  • THERMOFORMED ACRYLIC : It’s possible to deform an acrylic sheet by heating it up to 160degrees and using a vacuum forming machine. You can give to the acrylic sheet the shape you want by using a mold. For creating those thermoformed acrylic masks Anastasia Pistofidou 3Dmodel a human face made in MakeHuman software. The next step is to CNC mill the piece of PU high density foam (can be negative or positive. After, the 2d pattern is laser cut on an acrylic sheet of 3mm and finally heated-up and placed it on the foam face and put it under the vacuum forming machine. 3C2A3092mask thermo fashion tech show
  • WOVEN ELECTROLUMINESCENT THREADS : During the last day of the Textile Bootcamp Academy, a group mentored by Alex-Murray Leslie developed a woven piece that embedded Corning Fibrance Light-Diffusing Fibers from Versalume, reflective textiles and recycling elements like plastics bags and packaging papers. The loom used for creating the weaving was laser cut and built in the Fab lab from an open source file found in instructubles. The final woven piece became a shoulder piece inside a laser cut petticoat.
    weavingg weaving laser cut fashion show yomo

Inside the FabTextiles Lab we question ourselves about the future of textiles, technology and try to find hands ON ways to change the fashion industry. We using technology to create our own tools and discover new materials.

«Ha sido increíble colaborar con Anastasia Pistofidou y Fab Lab Barcelona en la creación de nuevos textiles hechos de materiales ecológicos, para el wearable tech fashion show que estoy dirigiendo para YOMO»
Alex Murray-Leslie

Fabtextiles team : Anastasia Pistofidou, Anna Masclans, Aldana Persia, Laura Ramos & Clara Davis

PRESS:

Betevé, reportage of 3 minutes
– Diari Ara 
class="post-1617 post type-post status-publish format-standard has-post-thumbnail hentry category-materials category-tutoriales tag-bio-couture tag-bio-plastics tag-bioplastic tag-fab-lab-barcelona tag-fab-textiles tag-material-catalogue tag-soft-fabrication">

Material catalogue Bioplastics & Biocouture

Work and Progress within the Seminar Skin2

Bioplastics Catalogue:

Discover the Bioplastic recipe here

Tests on overlapping layers of bioplastic sheets that are mixed with thermochromic ink.5

Tests on adding carbon fibres for conductivity on bioplastic6

Bioplastic with different color pigments and amount of glycerol to adjust flexibilityfoto1

Bioplastic with conductive thread and thermochromic ink34-35-730x518

Molding and Casting Bioplastic onto CNC milled wood58-59-730x518

Biocouture Catalogue:

Discover the Biocouture recipe here

Methods to combine the Biocouture with different materials5_BIO[lum]SKINLarge Scale Biocouture growth of 2cm thick (30 days)kombucha-growth-730x335

biocoture-1lk

biocoture-2lk