fab lab barcelona

class="post-2953 post type-post status-publish format-standard has-post-thumbnail hentry category-3d-printed-fashion category-digital-textile-prints category-exhibitions category-fab-textiles category-materials tag-3d-printed-fashion tag-biomaterial tag-exhibition tag-fab-lab-barcelona tag-fabtextiles tag-maker-faire tag-wereables">

Maker Faire BCN 2019 / Fabtextiles

FabTextiles and Materials Lab participated in the Makerfaire BCN 2019 at Nau Bostic.

The projects we presented were:

  • Textile Dyeing with Bacteria, a series of scarves and postcards from our research in the biolab
  • The atlas of Biomaterials, a materials library with various samples and recipes we have been developing since 2016
  • The algae warrior, final fabricademy project of Catherine Euale
  • 3D printed hats and digitally fabricated contemporary millinery from Betiana´s Pavon final project
  • A collection of Fabricademy final projects worldwide
  • A parametric leather molded bag made by Nicolas Olmos

Check out the exhibition here:

class="post-2591 post type-post status-publish format-standard has-post-thumbnail hentry category-colaboraciones category-fab-lab-barcelona category-fab-textiles category-materials tag-activated-charcoal tag-architecture tag-bio-filter tag-biomaterial tag-bioplastic tag-clara-davis tag-design tag-fab-lab-barcelona tag-fab-textiles tag-maria-luisa tag-restology tag-sustainable">

Bio Filter : bioplastic + activated charcoal

In 1831, Mr. Touery, a professor at the French Academy of Medicine, drank strychnine, a deadly poison, in front of all his colleagues. He survived. How ? He had combined the lethal dose with activated charcoal. “That’s how powerful activated charcoal is as an emergency decontaminant in the gastrointestinal (GI) tract, which includes the stomach and intestines. Activated charcoal is considered to be the most effective single agent available. It is used after a person swallows or absorbs almost any toxic drug or chemical.”*

Diagram displaying the major health effects of air pollution, CEDIM Lab by Restology project, 2017

.

Last year Fab Textiles worked on a flexible bio filter design to reduce the pollution of Monterrey, the most polluted city in Mexico. This research was undertaken for an architecture project named Restology, a multidisciplinary project between architects, interior designers, product designers, fashion designers, material designers, graphic designers, electronic engineers and marketing strategists. During one month, Maria Luisa Becerril and I collaborated at Fab Textiles, Fab Lab Barcelona on the development of a bio-composite made of bioplastic mix with activated charcoal.

.

Grains of activated charcoal, Fab Textiles, Fab Lab Barcelona, 2017

Liquid mixture of bioplastic and activated charcoal, CEDIM Lab by Restology project, 2017

 

Activated charcoal is one material that seems especially applicable to Fab Lab makers, because of its ecologically sound and purifying properties. It is essentially a form of incredibly microporous carbon, processed from natural carbon-rich materials by applying various gases or chemicals to ‘burn’ in tiny holes and thus exponentially increasing its surface area. The result ? A material that can efficiently filter out all manner of impurities and toxins. A super-sponge, if you will. Bioplastics present themselves as an excellent and similarly sustainable substrate for activated charcoal with a wide range of uses.

.

Bio-composite module tests, CEDIM Lab by Restology project, 2017

.

During the material research, Maria Luisa and I tried out 10 different recipes to discover the correct ratio of ingredients that provided the most appropriate amount of flexibility for using activated charcoal as a filter. For this research, we decided to use gelatin as our biopolymer and glycerol as our plasticizer. By experimenting with the quantities of glycerol relative to activated charcoal, one can influence the degree of flexibility of the mixture. Maria Luisa told me that in the previous experiments  with her team, the issue was that the samples were cracking  after the drying process. Probably because the bioplastic mixture was containing too much activated charcoal according to the glycerol ratio.

.

Bio-composite recipe experimentations, Fab Textiles, Fab Lab Barcelona, 2017

.

At the end of the experiments, we succeeded to have good results, with samples with different flexibility (hard like a rock to flexible like rubber) and textures (Rough to Smooth and Matte to Shiny). I noticed that some of the samples were conductive, an interesting fact that we could use for future e-textiles and wearables.

.

Bio-composite recipe experimentations, Fab Textiles, Fab Lab Barcelona, 2017

.

Samples

Water

Gelatin

Activated Charcoal

Glycerol

Flexibility

Texture

Conductivity

Resistance

10 cm

#1

100 ml

25 g

15 g

No

Hard

Smooth & Matte

Conductive

80 – 200 Ohm

#2

100 ml

25 g

15 g

10 g

Hard

Smooth & Matte

Conductive

100 – 200 Ohm

#3

100 ml

25 g

15 g

25 g

Very Flexible

Smooth & Shiny

Conductive

150 – 200 Ohm

#4

100 ml

25 g

15 g

35 g

Very Flexible

Smooth & Shiny

Non conductive

#5

100 ml

25 g

5 g

10 g

Flexible

Rough & Shiny

Non conductive

#6

100 ml

26 g

16 g

10 g

Shapeable

Rough & Shiny

Conductive

100 – 200 Ohm

#7

100 ml

16 g

16 g

10 g

Flexible

Smooth & Matte

Conductive

150 – 200 Ohm

#8

100 ml

50 g

16 g

10 g

Bendable

Rough & Matte

Non conductive

#9

70 ml

26 g

16 g

10 g

Flexible

Rough & Matte

Non conductive

#10

130 ml

26 g

16 g

20 g

Flexible

Rough & Matte

Non

Conductive

.

Some samples made for the Restology project were sent to the laboratory to be tested. The scan of electrons viewed in the microscope shows that the best recipe for creating a bio filter is one with the greatest amount of activated charcoal and almost as much glycerol as gelatin for better flexibility. The amount of ingredients use for this recipe is 20% glycerol , 28% gelatin, 57% activated charcoal and 14% water. Compared to the others, this recipe presented the highest average pore-size of 50μm, “creating a set of thin porous walls one behind another with inside cavities allowing the filtration of air pollutants.”**

.

Microscope scan of the bio-composite electrons, CEDIM Lab by Restology project, 2017

.

The laboratory analysis proved that one of the activated charcoal and bioplastic mixture was porous enough to fix pollutant particles. To validate the filtering potential of this bio-composite, the Restology researchers developed a machine measuring microparticles and gases such as NH3, Nox, Alcohol, Benzen, Smoke, CO2… This two-chambered device contains an Arduino system connected to two sensors : one reading dust density (GP2Y1010AU0F sensor) and one calculating air quality (MQ135 sensor). The two chambers are separated by the bio-composite filter, the polluted air is introduced in the first chamber, measured, and then remeasured in the second chamber after passing through the bio filter.

.

Data compilation machine : measuring air particles and gas, CEDIM Lab by Restology project, 2017

.

3 Days try out results, data compilation machine : measuring air particles and gas, CEDIM Lab by Restology project, 2017

.

OUTDOOR & INDOOR RESTOLOGY MODULE

Outdoor filter module : concrete, bioplastic and activated charcoal, CEDIM Lab by Restology project, 2017

.

Indoor filter module : bioplastic and activated charcoal, CEDIM Lab by Restology project, 2017

.

* E-Medecine Health Article, Medical Author: John P.Cunha, DO, FACOEP and Medical Editor: Melissa Conrad Stoppler, MD, Chief Medical Editor / Medically reviewed by John A. Daller, MD; American Board of Surgery with subspecialty certification in surgical critical car.

 

** Restology, absorption of suspended particles through bioplastic and activated charcoal, multidisciplinary thesis, Centro de Estudios Superiores de Diseno de Monterrey S.C., 7 December 2017.

 

Restology project by Monterrey Center for Higher Learning of Design (CEDIM University), Monterrey Mexico, Architecture Department Direction :

Project Leader : Yessica Mendez Sierra

Students : Ada Gloria Gonzalez Mireles, Ana Graciela Gonzalez Sanchez, Ana Maria Vargas Lasserre, Andrea Lizette Najera Rodriguez, Bárbara Garza Saldaña, Carla Ruizvelasco Garza, Cristina Adriana Briones Nuñez, Dana Mayeli Rangel Torres, Estefanía Flores Jiménez, Juana Valeria Gonzalez Ortiz, Kathia Quintanilla Garcia, Maria De Lourdes Hernández Lima, Maria Luisa Becerril Garcia, Mayra Valeria Moreira Balderas, Melissa Chapa Gil, Oscar Javier Alvarado Contreras, Priscila Luna Ramos, Roberto Luis Valenzuela Cortazar, Sara Eugenia Gonzalez Mascareñas, Veronica Saldaña Garza

 

-> About Restology project : https://www.trendhunter.com/trends/reduce-air-pollution

 

Article written by Clara Davis

class="post-2426 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-textiles tag-aldana-persia tag-cristina-noguer tag-electroluminescent-paint tag-fab-lab-barcelona tag-fabtextiles tag-painting-light">

painting electro-luminescence

At the Fab Textiles ​​we explored the functioning and application of electroluminescent paint. Different tests were developed on different type of  materials. 
Two final prototypes were generated with the designer Cristina Noguer for her exhibition "Refraccions" at Barcelona Desing Week 2017.
Research and development: Aldana Persia

About electroluminescent:
What is Electroluminescence?
Electroluminescence is an optical and electrical phenomenon in which a phosphorescent material emits light in response to an electric current or to a strong electric field. 
It is different from light emission resulting from heat (incandescence), from a chemical reaction (chemiluminescence) or other mechanical action (mechanoluminescence).

What is electroluminescent paint?
Electroluminescent Paint is essentially a painted circuit. A multi-layered system which uses an alternating current (A.C) power source in order to emit light.

How to make electroluminescent paint circuits?
Basically we need to generate a phosphorescent layer between 2 conductive layers. They must not touch each other in order to not generate a short circuit, so an insulating layer must also be added between them.

Electroluminescent Paint requires a minimum of 100v of alternating current to emit light. Standard electronics consist of 12-18v D.C inverted to approximately 180v A.C. When an inverter applies the proper voltage and frequency, it excites the electrodes contained in the paint and its lights up. 
Materials used during the project: 
Lumilor electroluminescent paint: (Conductive,Transparent conductive,Dielectric,Phosphorescent)
Clear paint (any kind of transparent layer)
Gloves
Mask
Masking tape
Multimeter
UV light
Low pressure gun 
Heat Gun 
Inverter (DC into AC)
9-12 Batteries

Methods:

1- BASE: 
We developed tests on different materials such as fabrics, conductive glass, acrylic, wood and paper. Ideally the material does not to have texture, to avoid the layers cross the material or mix it each other.
2- CONDUCTIVE LAYER:
We masked the surface that wouldn’t be painted.
Using a low pressure gun we applied coats in horizontal and vertical way checking that the whole surface was covered.
15 to 30 minutes must be waited before applying the next layer to let the paint dry. 
We checked Ohms with a multimeter to ensure that the electricity flowed freely into the whole surface.
3- DIALECTRIC LAYER: 
We made a new mask covering the conductive flange.
We mixed slowly the paint to avoid bubbles that could cause problems to cover conductive layer (a minimum free point can cause a short circuit between conductive layers).
Using a low pressure gun we applied coats in horizontal and vertical way.
We waited 15-30 minutes before applying the next layer.
4- PHOSPHORESCENT LAYER:
We applied the phosphorescent layer with a low pressure gun under a UV light to check that the paint was applied in an uniform way over the whole surface. A good rule of thumb its to shake the pressure gun during the process, so that the phosphorescent pigments and the paint do not separate.
5- BUS BAR CONDUCTIVE LAYER:
Same materials used at layer 1. This layer distributes the electric current. It size has to be  20-30% of the phosphorescent layer. 
6- TRANSPARENT CONDUCTIVE LAYER:
It was the most difficult layer to apply because the paint was very liquid.  We resolved this issue drying the paint with a heat gun during the process. It is necessary to apply a thin coat to let the light be seeing under it.
7- CLEAR COAT:
We used a painted material to encapsulated the circuit and prevent electric shock when touching it. It can be or not a paint material depending on the purpose (for example glass), but always a transparent material to let the light be seeing. 

 

 

Different tests

Refraccions exhibition
With the Designer Cristina Noguer 2 paper lamps were created and developed for her exhibition Refraccions at Barcelona Design Week- 12ª edition, Design Unique Piece 2017. Her exhibition was based on the natural and artificial light as main material.




Pictures from Refraccions Exhibition, Cristina Noguer
class="post-1817 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-lab-barcelona category-fab-textiles category-talleres category-tutoriales category-wearables tag-academany tag-bio-couture tag-bioplastics tag-computational-fashion tag-e-textiles tag-fab-lab-barcelona tag-fab-textiles tag-hacking-fashion tag-waag tag-wearables">

Textile Academy Bootcamp

 

POSTER BOOTCAMP

Fashion needs to be updated! We are making a bespoke program for the new hybrid fashion and textile designers, artists and curious technologists combining the essential tools and knowledge of our digital era.

Lectures :

Hacking the fashion industry  by Zoe Romano

Open source hardware for soft fabrication, by Varvara Guljajeva and Mar Canet

Tutorials :

Computational Couture with Rhinoceros and Grasshopper by Aldo Sollazzo,

E-textiles and wearables by Angel Muñoz and Cristian Rizzuti

Bio couture , Bacteria textile dying and Bioplastics by Anastasia Pistofidou and Cecilia Raspanti

POSTER BOOTCAMP-02

On our JAM you will make groups and collaborate with local and international artists for developing projects of the things you ve learned throughout the week!

Subscribe here!

 

class="post-1670 post type-post status-publish format-standard has-post-thumbnail hentry category-3d-print category-fab-textiles category-talleres tag-3d-printing tag-bootcamp tag-fab-lab-barcelona tag-fab-lab-bcn tag-fab-textiles tag-fabtextiles tag-iaac tag-laser-cutting tag-soft-fabrication tag-textiles tag-workshop-fab-lab tag-workshops">

Fab Textiles Bootcamp

20160609_143950
Bootcamp with Icelandic teachers:
Introduction to soft fabrication and the use of digital fabrication applied on textiles and fashion
 
New mediums of production and accessibility to new technologies are changing the way we learn, design, produce and consume. Fashion education and the industry are still in the process of adaptation to the new technologies and the open source culture. Innovative processes and multidisciplinary synergies are defining the new era, which calls upon the awareness of the way things are made and the opportunities that the new tools offer to innovate and reimagine the future.
This bootcamp with FATEX – Association of apparel and textile secondary school teachers focused on transmitting Digital Fabrication and New Technologies applied in Fashion. Digital fabrication allows us to experiment with the way we design, produce and consume fashion introducing the participants to 3D modelling, parametric design, 3D printing, new techniques and materials.
IMG_1146
IMG_2653
 kombucha culture/ grow your own textile
Day 1 (6 hours)
Presentation of the Roadmap of the fab textiles projects.
Hands on use of laser cutting technology for fabrics, from 2D patterns to 3D structures. The participants were introduced to 2D design programs and file preparation for laser cutting fabrics. A great variety of different fabrics was tested and a catalogue of speeds and power for each fabric was generated for cutting and laser engraving. The participants brought as well local fabrics from Iceland such as fish leather, felt, cow leather and horse hair in order to learn how these materials can be used with digital fabrication technologies and apply the techniques back in their schools.

IMG_2714

Day 2 (6 hours)
Molding Felt and CNC milling
Hands on work
IMG_1133
20160610_124129
Day 3 (6 hours)
Introduction to 3D printing applied in fashion
The exercise was a introduction to 3D modelling through parametric design using Rhinoceros and Grasshopper and file preparation steps and tips for 3D printing. The technique implies the use of fabric on the 3D printer platform where the flexible filament adheres. The grasshopper definition generates curly volumes that vary in width and height. If the fabric used on the platform is stretched the curly pattern can impose the deformation of the fabric into a 3D structure.
This tutorial gives an insight into the correct choice for fabric and appropriate 3D geometries that give properties to the soft structure.

IMG_26273D printing on fabrics Technique

Day 4 (6 hours)
Integrating soft circuits in the garment
Basic Tilt sensor with LED circuit
Participants used basic electronic components such as conductive thread, LEDS, battery and tilt sensor in order to make a small circuit that was integrated into a laser cut bracelet pattern.
IMG_1158
class="post-1651 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-textiles category-materials category-products category-tutoriales tag-fab-lab-barcelona tag-fab-textiles tag-jewelry tag-laser-cutting tag-wooden-textile">

Wooden Textile Bracelet

IMG_04192

What do you need:
veneers
textile (denim)
woodglue + brush or paint roller
vacuum press
lasercutter (trotec speedy 100)
rhinoceros
4 buttons (for cling sealing)
rivet gun for buttons

tools

How to do:
Connecting fabric and wood
1. Cut your fabrics and veneers in nearly the same size
2. Brush one side of the wood with the woodglue and put it on the fabric (ensure that the fabric is flat). For a better result we recommend, to do it with the paint roller, so that the glue is very thin and evently distributed
3. Now, place the two materials into a vaccum press and wait until the materials get connected and dried

 

IMG_0399 IMG_0404

IMG_0403

IMG_0406

IMG_0408

Preparing the Lasercut
Meanwhile you can create your File for the lasercut. You can do that in Adobe Illustrator (save as DXF) or directly in Rhinoceros. The lines should be colored red for cutting.
You have to think about how you want to connect the bracelet (we choose the buttons).
Our Example, you can download here.

rhino1

Lasercutting the wooden-textile
1. For a good result (only the wood gets cut) you need the the right power and speed for the lasercut-settings
Here you can see some examples made with the Trotec Speedy 100:

IMG_0417

01 1.5mm wood + denim Power:70 Speed:3
02 1 mm wood + denim Power:50 Speed:4
03 0.5mm wood + synthetic fabric Power:50 Speed:5
04 1mm wood + synthetic fabric Power:50 Speed:4
05 1mm wood + very thin synthetic fabric Power:57 Speed:7
2. First do the engraving (the pattern), after, the cutting part (the shape)
3. For cutting you just have to put the power to a higher value ( f.e.: 50 > 90)

Finishing
Now you can finish your piece by attaching the buttons to the blacelet. For that you just need the appropriate rivet gun or tool.

IMG_0418

 

class="post-1617 post type-post status-publish format-standard has-post-thumbnail hentry category-materials category-tutoriales tag-bio-couture tag-bio-plastics tag-bioplastic tag-fab-lab-barcelona tag-fab-textiles tag-material-catalogue tag-soft-fabrication">

Material catalogue Bioplastics & Biocouture

Work and Progress within the Seminar Skin2

Bioplastics Catalogue:

Discover the Bioplastic recipe here

Tests on overlapping layers of bioplastic sheets that are mixed with thermochromic ink.5

Tests on adding carbon fibres for conductivity on bioplastic6

Bioplastic with different color pigments and amount of glycerol to adjust flexibilityfoto1

Bioplastic with conductive thread and thermochromic ink34-35-730x518

Molding and Casting Bioplastic onto CNC milled wood58-59-730x518

Biocouture Catalogue:

Discover the Biocouture recipe here

Methods to combine the Biocouture with different materials5_BIO[lum]SKINLarge Scale Biocouture growth of 2cm thick (30 days)kombucha-growth-730x335

biocoture-1lk

biocoture-2lk

class="post-1556 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-lab-barcelona category-fab-textiles category-talleres tag-bio-couture tag-bio-plastics tag-biocouture tag-bioplastics tag-composites tag-embedded-electronics tag-fab-lab-barcelona tag-fab-textiles tag-haptic-wearables tag-lightweight-materials tag-skin2 tag-soft-fabrication tag-structural-digital-fabrication tag-textiles">

Skin2 Elective Seminar // Biocouture// Bioplastics

Master in Advanced Architecture – Skin2 Seminar Final Presentations
SO.18 – Elective Seminar

What will the human of the future be like? Focusing on the human skin, as a means for protection but also a mediator of our senses and the environment, the Master in Advanced Architecture seminar Skin2 led by Manuel Kretzer and Anastasia Pistofidou, wanted to look into ways of creating novel interactions and bodily experiences.MAA students experimented with raw materials and recipes to create thin membranes and surfaces, which were further supplemented through embedded electronics. Besides developing advanced material systems, a crucial task for the students was been to think about the practical applications and implications of a second skin.

PROJECTS

ENCRYPTED BIOMETRICS

by Jonathan Irawan, Lalin Keyvan, Jean Sebastian Munera and Connor StevensSKINS2 - Encripted Biometrics - IAAC - 2What we envision as a result of the new skin, is that the world will no longer be defined by political or geographical boundaries, but rather territories of health zones to maintain certain liveability aspects. Whether this is a good outcome or not we shall tell. Another result of the skin is the development of a new sense, a sixth sense.As a design, pockets to analyse blood and a vein network were to combined as the encrypted biometric skin.

Video SKINS2 – Encypted Biometrics

BIO[LUM]SKIN

by Thora H. Arnardottir, Noor Elgewely, Jessica Dias, Ingried Ramirez11We imagine a future that is completely dark. Where humans have evolved into an altered state of organisms, forming a different species interdependent on each other. Our concept for the skin was to create a new organ as an extension of the human body. We want to host living organisms on our second skin to illuminate the otherwise invisible creatures from the deep sea.We dried the bio-plastic cast on a mannequin in order for it to take the contour of the body and spine. The geometry of this wearable was developed from the hand sketches, and then translated into a 3D model using Rhino.

Video BIO(lum)SKIN

MIURA ORI SKIN

by Jengrung Hong, Sameera Chukkapalli, Hsin Li, Tanuj Thomas83-730x516Based on the final system for the proposed skin design, the Material and Fabrication techniques decided are as follows: Fabric: Laser cutting / Folding, Thermochromics: Screen Printing, 3D Printing: SLS nylon / Mold casting. The Miura fold is a form of rigid origami, meaning that the fold can be carried out by a continuous motion in which, at each step, each parallelogram is completely flat.

Video Miura Ori Skin

VOIDSKIN

by Robert Chacon, Khushboo Jain, Christopher Wongvoidskin-page-7-960BanteringDynamics is pleased to introduce an innovative weapons paradigm that will revolutionize the global battle against crime and disorder. VOIDSKIN (Variable Organic/Inorganic Differentiation System K_________ Inhibition N_________) transparently protects security personnel from the deleterious effects of VOID weapons technology through the thermoreaction of shielding picoparticles to the instantaneous pseudoabsolute zero generated by the discharge of a VOID weapon. VOIDSKIN’s triple layering system redundantly ensures protection against dematerialization while incorporating thermonegative resistance to plasma weapons.

Video Voidskin

EL AMOR EN LOS TIEMPOS DEL CÓLERA

by Justyna Brzakala, Lina Salamanca,Dirk Van Wassenaer, Pedro Levit ArroyoIMG_1046We will create a membrane which permits people to maintain intimacy without therisk of contamination.Intimate relationships allow a social network for people to form strong emotional attachments. These relationships involve feelings of liking or loving one or more people, romance, physil or sexual attraction, sexual relationships, or emotional and personal support between the members.

Video El Amor Ee Los Tiempos Del Cólera

RE[SKIN]ULATE – [ION]TEX

by Sahana Sridhar, Nisarg sheth, Anastasia Stephany

09What we need is a second skin that could produce or attract negative ion for our body. Therefore we try to invent a new material which we named [ION]-TexFrom all the experiment and research, it was figured that the best way to achieve our goal is to combine few steps with turpentine and graphene with the silicon mold, to make sure that the prototype could work. This material that we found could be produce as vary products such as blanket, mask, belt, etc.

Video RE[SKIN]ULATE – [ION]TEX

The first phase of the seminar focused on creating new materials or combining existing materials into advanced composites, with a particular focus on bioplastics and kombucha. During the second part of the course students could investigate the augmentation and actuation of the material systems through means of electronics and physical computing.

The final phase was reserved to developing a functional application, working prototype and speculative future scenario, presented through means of video and material catalogues.
SKIN2

What will the human of the future be like? Ray Kurzweil predicts the ‘Singularity’, the progressive amalgamation of the human brain and machine intelligence. Aubrey de Grey understands aging as a disease that can be cured and may lead to infinite life extension. And Zoltan Istvan, who with his ‘Transhumanist Party’ is currently running for US presidency, advocates -among other things- the technological enhancement of the mind and body through robotics and smart devices. Within the context of ‘Humanity +’ we want to explore the possibilities and potential effects of augmenting the self and extending the body. Focusing on the human skin, as a means for protection but also a mediator of our senses and the environment we want to look into ways of creating novel interactions and bodily experiences.  We will work with raw materials and recipes to create thin membranes and surfaces, which will be supplemented through embedded electronics. Besides developing advanced material systems a crucial task will be to think about the practical applications and implications of a second skin.
The first phase of the seminar will focus on creating new materials or combining existing materials into advanced composites. During the second part of the course we will investigate the augmentation and actuation of our material systems through means of electronics and physical computing. The final phase is reserved to developing a functional application, working prototype and speculative future scenario.

output_hFLjzN

class="post-1524 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-textiles category-mannequins tag-fab-lab-barcelona tag-fab-textiles tag-fablabbcn">

Fiber Dress “Cloudio”

The pieces are part of the exhibition  VESTIR I DESVESTIR COSSOS. Fenomenologies d’aparició
Del 13 de febrer al 22 de maig de 2016, at the art center > La Panera

The Fiber dress is an ongoing collaboration between Ali Yerdel “Stigmergic Fibers” and Anastasia Pistofidou “FabTextiles” that explores the applications of the candy tool and the process applied on non woven clothing sprayed.

The concept of Natural making soft envelopes on the body and creating the garment and the textile in one step. Combining automated methodology and craftmenship.

By the direct engagement of the two disciplines, cloth making and spraying process, Creates a unique Organisations and single process. The new hand tool Gives a new role to how to design new non‐woven clothing.

fiberdress3s

fiberdress2

default

fiberdress8

fiberdress7

fibersdressdd

The pieces are part of the exhibition  VESTIR I DESVESTIR COSSOS. Fenomenologies d’aparició
Del 13 de febrer al 22 de maig de 2016, at the art center > La Panera

class="post-1439 post type-post status-publish format-standard has-post-thumbnail hentry category-fab-textiles category-modular-textile-system category-talleres category-uncategorized tag-fab-lab-barcelona tag-fabtextiles tag-workshop-fab-lab">

Dress up Workshop Tel Aviv

We got invited to the international workshops of the College of Management Academic Studies, COMAS in Tel Aviv, Israel and the FabLabIL with a proposal for a workshop on “Soft Space”

Soft Space is a seminar that explores new relationships between our body and the surrounding environment. Even if our body is 90% of the times enveloped in soft materials, we cannot declare the same with space and its architecture. What if we imagine a fluid , soft, maleable , interactive surrounding as an extension of our body?

Digital Fabrication and CAD-CAMM technologies give us easy and direct access to tools and create a fertile ground for experimentation.

Through the exploration of soft materials and different fabrication techniques we can design new interactions and perspectives about objects, our body and space.

dressup12output_NCKfIE

 

output_M8yk1s

dressup66

dressup00dressup66

output_iwjnzV

dressop000dressip88dressup123

As far as the program overview, if the workshop is an intensive course of 1week / 40hours (8h/day)

1.1. Processes and techniques – digital manufacturing

1.2. New materials, intelligents, reagents, soft, technicians, biomaterials

1.3. Space as body- extention of technology and the new body

1.4. Digital fabrication techniques on materials

1.5. The imaginary space

2.1. Laboratory project proposals

2.2 Fabrication Laboratory models

2.3. Submission of proposals.

2.4 Manufacture of selection of proposals in scale 1: 1 (Cut Laser- impression 3D- CNC milling – elecronic)

class="post-1289 post type-post status-publish format-standard has-post-thumbnail hentry category-3d-print category-fab-lab-barcelona category-fab-textiles category-talleres tag-3d-print-on-fabric tag-fab-lab-barcelona tag-fabtextiles tag-workshop-fab-lab">

3D Print on Fabric – Ftex workshop Feb 2016

Print on Fabric

The process of printing on fabric is quite direct, you have to attach the fabric with black clips on the printing platform and readjusting the nozzle according to the fabric height.

After some experiments on different fabrics we ‘ve noticed that 1mm hole meshed fabric does not adhere properly on the surface. We have tried on viscose and on lycra and it works , still need more tests.

print-on-fabric-1

According to different fabrics and and 3d models you can impose forms on the fabrics, 3d volume, different weight and deformation.

Check this project here>

 

 

class="post-1353 post type-post status-publish format-standard has-post-thumbnail hentry category-3d-print category-fab-textiles category-talleres tag-3d-print-on-fabric tag-fab-lab-barcelona tag-fabtextiles">

WinterLAB [+] @ Laboral, Asturias

Laboral organised a meeting on community and the critical use of technology with a weekend programme of presentations, round tables and workshops in November 2015. 

Here you can see the streaming of the presentation.

WinterLAB is aimed at exchanging community work experiences that foster the creative use of technology and bring the new media for creation and production closer to the public.The aim of the hands-on workshops is to disseminate maker and DIY culture among the general public and, at the same time, provide professionals with open source tools and techniques suitable for creative projects.

The workshop was an overview of techniques and digital fabrication methods where different background participants worked with 3D printing on Fabric, 3D modeling and laser Cutting.

WINTERLAB2

WINTERLAB16

output_wZ2jpK

We have used the customizer application of Thingiverse and the mesostructured materials development of Andreas Bastian  to create different patterns and understand adjustable flexibilities imposed by the density, the shape, the thickness and the height. Flexible structures, auxetic, bistable geometries are one of the options on 3D printing for elastic performance.

WINTERLAB8

winterlabcollage

 We also had some participants that brought patrons and wanted to digitalise them, so we made an “easy patron” tutorial.

We took pictures of the paper patron and designed their outlines in Rhinoceros. We also applied patterns for laser engraving on the synthetic neoprene that turn to be darker after the etching. White color turns brown and dark colours would not make much difference.

easypatron1web

easy patron fab textiles

class="post-1078 post type-post status-publish format-standard has-post-thumbnail hentry category-products tag-accessories tag-distribute-manufactoring tag-fab-lab-barcelona tag-ingi-freyr-gudjonsson tag-taska">

TASKA

Taska is the Icelandic word for a backpack and also a multifunctional bag made to carry everything from a laptop to all your camping gear. The design of the pattern is simple and the bag can be made from one single piece of almost any textile, which makes it easy to assemble. Eliminating weight-carrying seams gives it more durability and longer life expectancy. With any wood and textile Taska can be easily made in a local fabrication laboratory within the global network of FabLabs.

taska2

For us the beauty of this project is not only the backpack itself but the ability of distributed manufacturing. In that way it is possible to eliminate long distance shipping, to use locally sourced materials anywhere and gives the customer a change for easy customization. A product that changes according to culture. Textiles and wood from all over the world take the form of Taska, embracing culture and local production

TASKA INGI FAB

Taska can be fabricated with the following ways

1) Download the open source creative commons license design that comes with an instruction kit. With the materials of your selection, produce it at the local lab with the compromise of sending a short video of 1 minute of the making of and a picture of your version

2) Let the local fab lab to produce it for you with materials of your choice and pick it up.

3) Place an order from the designer.

Contribute to the growing network of Taska and make your version to reveal the multicultural world we live in. Let’s make distributed manufacturing true.

Contact us to get or make your TASKA!

Designer: Ingi Freyr Gudjónsson

Concept and mentorship : Anastasia Pistofidou

class="post-1087 post type-post status-publish format-standard has-post-thumbnail hentry category-exhibitions tag-digital-couture tag-fab-lab-barcelona tag-fab11 tag-fabtextiles tag-wearables">

FAB 11 Digital Fashion and Wearables Exhibition CALL FOR PROJECTS

+CALL FOR PROJECTS+

Digital Fashion and Wearables Exhibition

Fab11_Boston invites you to submit your proposal for the Digital Fashion and Wearables Exhibition that will take place during the Fab Festivalfrom August 8 and 9 in the cities of Boston, Cambridge and Somerville.

Creators working in digital couture, wearables, performative arts, 3D printed fashion and soft architectures are invited to participate in this year´s Fab Textiles Showcase. The exhibition traces and marks the current scene of textile creation,wearable interactions, fashion and soft architecture inside the fab lab environment.
Making Impact at one of the largest industries and reinventing from our everyday clothing to our wearable enhancements.

Selected proposals will have the opportunity to showcase their pieces during the Digital Fashion and Wearables Exhibition.

DEADLINE for submission : 15 JULY
SELECTED PROJECTS : 20 JULY

SUBMIT YOUR PROPOSAL

 

For further information contact : [email protected]

posterfab11SMALLer

class="post-1083 post type-post status-publish format-standard has-post-thumbnail hentry category-uncategorized tag-3d-printing tag-computational-couture tag-fab-lab-barcelona tag-fab-textiles tag-iaac tag-laser-cutting">

Computational Couture @Beyond

Last May 19th to 22nd, in the context of the International Construction faire Construmat  and within the Pavilion of InnovationIaaC|Fab Lab Barcelona runned the Computational Couture workshop.

The Computational Couture workshop focused on expanding the horizons of dress making towards an algorithmic approach, and taking design beyond the physical functions of the body (movement, protection, temperature regulation) towards the evolution of cultural expression.During the workshop participants coming from different backgrounds had the possibility to work in a multidisciplinary context to co create this custom fitted clothing that brings together computation, fashion design and digital fabrication.

Computational couture looks at the creation of exclusive custom-fitted clothing (typical of haute couture) through the lens of a systemic approach, extending the sartorial techniques with 3D modeling and computation-based approaches developed in Rhinoceros and the visual programming environment Grasshopper.Aim of the workshop is to exert, infuse and expand the sartorial sensibilities to body proportions and dress making into an algorithmic approach that loops through design and fabrication by means of laser cutting and 3d printing for the design and production of a garment.

Tutors> Alessio Erioli, Anastasia Pistofidou, Lidija Stanojcic

IMG_8977

 

 

 

 

 

 

 

IMG_8915

 

class="post-981 post type-post status-publish format-standard has-post-thumbnail hentry category-3d-print category-bordado-digital category-colaboraciones category-electronica-textil category-exhibitions category-mannequins category-patronaje-digital category-talleres category-uncategorized tag-apron tag-custom tag-fab-lab tag-fab-lab-barcelona tag-fab-lab-bcn tag-fab-textiles tag-iaac tag-laser-cutting tag-textiles">

Laser cut aprons

In the fab textiles we made a laser cut apron for the fab lab members. The aprons are made from raw denim and they contain special pockets for the fab lab tools.

apron web
web1

web3DSC_0085
DSC_0077

1DSC_0078

 

 

class="post-835 post type-post status-publish format-standard has-post-thumbnail hentry category-bordado-digital tag-case tag-fab-lab tag-fab-lab-barcelona tag-fab-lab-bcn tag-janome tag-laptop-case tag-mac">

Laptop embroidered cases

Using the embroidery machine we have started creating these minimal laptop cases.

laptop case closeup

We used raw denim for the base, thin foam for the inner lining and embroidered animal figures in zigzag technique, the outcome is a unique and individual laptop case, which will be a part of a mini collection soon.

laptop case embroidery  closeup

This is an excellent example of the use of fabtextiles ideas in the every day life.

laptopcase

class="post-731 post type-post status-publish format-standard has-post-thumbnail hentry category-exhibitions category-mannequins tag-3d-printing tag-fab-10 tag-fab-lab-barcelona tag-fab-lab-bcn tag-fab-textiles tag-iaac tag-mannequin tag-waffle-structure">

RIG mannequin

RIG is a digitally processed and fabricated mannequin designed for ¨Fab-Textiles Showcase¨ during the Fab10 international conference in Barcelona.

The design for RIG is an exploration into the creative potential of mannequins as tools for exhibiting and work with. RIG is a manifestation on how tools should be rethought, redesigned, and reimagined. As one walks around the waffle structure, the perspective of three-dimensionality makes the volume of the RIG appear and disappear.  From the side, the physical representation of the human body is defined, yet as the visitor moves towards the front of the mannequin, the body slowly disappears, allowing the clothing to properly showcase itself.

For the digital design process, the software 123d Make was used to generate the waffle structure, where you can find all the files. Each section of the mannequin required a different waffle density depending on the structural requirements and resolution of detail required. These varying strategies were applied to the right arm, the left arm, the torso and the base and then compiled into Rhino to adjust the overlapping conditions. In total, 15 mannequins were produced with each RIG consisting of 184 unique pieces lasercut out of 3mm MDF.

rig fab textiles 1

rig fab textiles 2

rig fab textiles 3

lanaRIG rigsmal

 

Credits: Fab Lab Barcelona

Design: Lana Awad

Fabrication: Lana Awad, Drew Carson, Anastasia Pistofidou

Special thanks to: Carmen/Ece/Andrea/Sebastian/Thiago/Andre/Efilena/

Photography credits: Thiago Kunz

class="post-659 post type-post status-publish format-standard has-post-thumbnail hentry category-talleres tag-3d-printing tag-embird-software tag-fab-lab-barcelona tag-fab-lab-bcn tag-fab-textiles tag-laser-cutting tag-raster-image-on-fabric tag-rhinoceros tag-textiles">

Fab Textiles V5

Fab Textiles V5: Redefining pattern making and traditional seam joinery

Participants to this edition of the Fab textiles workshop were introduced to digital modelling techniques that allowed them to develop designs in Rhino and fabricate personally customised clothing using the technology provided at the lab.

The first assignment was to transform an image using Grasshopper into complex geometry using a series of data manipulations based on colour information.

Once participants had a basic understanding of digital model and manipulation techniques, they learned methods to digitally design and produce individually designed clothing. First, a mannequin was scanned using Kinect and imported into Rhino. Participants then collectively decided on the design of the garment by physically projecting lines onto the body. These lines were then imported into rhino and digitally projected onto the mannequin. These lines delineated the components that would then be laser cut from textiles and assembled as a kit of parts.

Using this process, participants have learned how to fully develop their textile based projects digitally from the design project, all the way through to development and fabrication.

Introduction to the Fab Lab Machinery

IMG_9061

Fabrication of Textile Patterns

IMG_3701

Rastered Textiles with Patterns

IMG_3700

Kinect scanning of the Mannequin

IMG_3690

Video of Digital Production:

Fab Textiles V5 from Fab Lab Barcelona on Vimeo.

class="post-898 post type-post status-publish format-standard has-post-thumbnail hentry category-3d-print category-bordado-digital category-patronaje-digital category-talleres tag-3d-printing tag-bau tag-digital-pattern tag-fab-lab-barcelona tag-fab-lab-bcn tag-fab-textiles tag-lasercut-clothes tag-raster-image-on-fabric tag-textiles tag-workshops">

Summer workshop with Fashion students of BAU, School of Design

During the summer workshops, fashion students of BAU, School of Design made a workshop of digital fabrication technologies applied in  fashion.Students were introduced to laser cutting patterns, laser cutting existing clothes, 3D printing and digital embroidery.Digital fabrication opens different possibilities in Fashion education,  production and consumption.

The students during the workshop were introduced to the maker culture and technologies available in the context of the Fab Lab Barcelona in order to understand the possibilities of digital creation and learning by doing methods in fashion.
FabLab_00FabLab_01FabLab_02FabLab_03FabLab_04FabLab_06FabLab_07FabLab_08FabLab_11